Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans.
نویسندگان
چکیده
Targeted electric deep brain stimulation in midbrain nuclei in humans alters cardiovascular parameters, presumably by modulating autonomic and baroreflex function. Baroreflex modulation of sympathetic outflow is crucial for cardiovascular regulation and is hypothesized to occur at 2 distinct brain locations. The aim of this study was to evaluate sympathetic outflow in humans with deep brain stimulating electrodes during ON and OFF stimulation of specific midbrain nuclei known to regulate cardiovascular function. Multiunit muscle sympathetic nerve activity was recorded in 17 patients undergoing deep brain stimulation for treatment of chronic neuropathic pain (n=7) and Parkinson disease (n=10). Sympathetic outflow was recorded during ON and OFF stimulation. Arterial blood pressure, heart rate, and respiratory frequency were monitored during the recording session, and spontaneous vasomotor and cardiac baroreflex sensitivity were assessed. Head-up tilt testing was performed separately in the patients with Parkinson disease postoperatively. Stimulation of the dorsal most part of the subthalamic nucleus and ventrolateral periaqueductal gray resulted in improved vasomotor baroreflex sensitivity, decreased burst frequency and blood pressure, unchanged burst amplitude distribution, and a reduced fall in blood pressure after tilt. Stimulation of the dorsolateral periaqueductal gray resulted in a shift in burst amplitude distribution toward larger amplitudes, decreased spontaneous beat-to-beat blood pressure variability, and unchanged burst frequency, baroreflex sensitivity, and blood pressure. Our results indicate that a differentiated regulation of sympathetic outflow occurs in the subthalamic nucleus and periaqueductal gray. These results may have implications in our understanding of abnormal sympathetic discharge in cardiovascular disease and provide an opportunity for therapeutic targeting.
منابع مشابه
Arterial Baroreflex Buffering
Static muscle contraction activates metabolically sensitive muscle afferents that reflexively increase sympathetic nerve activity and arterial pressure. To determine if this contractioninduced reflex is modulated by the sinoaortic baroreflex, we performed microelectrode recordings of sympathetic nerve activity to resting leg muscle during static handgrip in humans while attempting to clamp the ...
متن کاملBaroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans.
To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip mu...
متن کاملArterial baroreflex control of muscle sympathetic nerve activity under orthostatic stress in humans
The mechanisms by which blood pressure is maintained against the orthostatic stress caused by gravity's effect on the fluid distribution within the body are important issues in physiology, especially in humans who usually adopt an upright posture. Peripheral vasoconstriction and increased heart rate (HR) are major cardiovascular adjustments to orthostatic stress and comprise part of the reflex ...
متن کاملBaroreflex control of sympathetic nerve activity in essential and secondary hypertension.
Studies performed in experimental animals and in humans have documented that high blood pressure markedly impairs baroreceptor control of heart rate. Whether a similar impairment also characterizes baroreceptor control of sympathetic activity modulating peripheral vasomotor tone is still unknown. In 28 untreated essential hypertensive subjects [14 of moderate and 14 of more severe degree, age 5...
متن کاملIs nitric oxide involved in the tonic inhibition of central sympathetic outflow in humans?
Recent studies in experimental animals have advanced the concept that neuronal nitric oxide is an important component of the signal transduction pathways that tonically restrain sympathetic vasoconstrictor outflow from the brain stem. To determine whether or not this concept can be extended to the control of sympathetic outflow in humans, we recorded muscle sympathetic nerve activity (microelec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 63 5 شماره
صفحات -
تاریخ انتشار 2014